Exercise 65

(a) Use a graph to estimate the absolute maximum and minimum values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum values.

$$
f(x)=x^{5}-x^{3}+2,-1 \leq x \leq 1
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{5}-x^{3}+2\right) \\
& =5 x^{4}-3 x^{2}
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
5 x^{4}-3 x^{2}=0 \\
x^{2}\left(5 x^{2}-3\right)=0 \\
x^{2}=0 \quad \text { or } \quad 5 x^{2}-3=0 \\
x=0 \quad \text { or } \quad x^{2}=\frac{3}{5} \\
x=0 \quad \text { or } \quad x=-\sqrt{\frac{3}{5}} \approx-0.774597 \quad \text { or } \quad x=\sqrt{\frac{3}{5}} \approx 0.774597
\end{gathered}
$$

$x=0$ and $x= \pm \sqrt{3 / 5}$ are within $-1 \leq x \leq 1$, so evaluate f at these values. The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $-1 \leq x \leq 1$.

$$
\begin{aligned}
f(0) & =0^{5}-0^{3}+2=2 \\
f\left(-\sqrt{\frac{3}{5}}\right) & =\left(-\sqrt{\frac{3}{5}}\right)^{5}-\left(-\sqrt{\frac{3}{5}}\right)^{3}+2=2+\frac{6}{25} \sqrt{\frac{3}{5}} \approx 2.1859 \quad \text { (absolute maximum) } \\
f\left(\sqrt{\frac{3}{5}}\right) & =\left(\sqrt{\frac{3}{5}}\right)^{5}-\left(\sqrt{\frac{3}{5}}\right)^{3}+2=2-\frac{6}{25} \sqrt{\frac{3}{5}} \approx 1.8141 \quad \quad \text { (absolute minimum) }
\end{aligned}
$$

The graph below illustrates these results.

